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THE DISTRIBUTION OF THE TEST STATISTIC
USED IN THE NEWMAN-KEULS MULTIPLE COMPARISON,TECHNIGUE

James 'E. Carlson, Charles E. Stegman, and Wayne R. Applebaum
University of Pittsburgh : oo

1. Introduction
14

Thé purpose 6f this study was to investigaté the distribution of the
test statistic used in the Tukey, Ne%man—xeuls and Duncan methods of per-
forming post~hoc multiple compa{isons following a significant analysis of

variance F-test. There is a problem in this distribution that is not

4

directly discussed in the literature we have surveyed but is mentioned in

”

a personal cpmmunicatioﬁ from Rupért G. Miller (1971), and is alluded to

. by Spiétvoll(1974). Because different Studentized range distributions are

usgd direct{f in getermining cr;tical values for the Newman-Keuls method
our discussion will center'around this particular method. ' ~
2. The Newman-Keuls Technique

Following a signific;nt analysis of variance F-test, among the many
available post hoc multiple comparison techniqué; is ore first mentioned
by “Student" (Newman, <1939), developed by Newman' (1939) and tediscovered
" by Keuls (1952). This procedure is now known as the Newman-Keuls'hethod.

Given the set of k population means, Hys Hos eoes My s estimgted
by the means of k independent random sample, ?i, ?}, e §£ , the first

step in the Newman-Keuls procedure is to rank these shmple means. Denoting

3
/
v—

" the ﬁth smallest mean as Y(j)'so that the smallest ‘is ?kl) and the largest

xal?kk) . :hs ?rdered set of,samgle means is ?}1), ikZY’ "'ijkk)N'




The second step 18 to compute fhe,following ratio:

¢

=<y
|
~~
=
g
<

0 Lt T
- g

where n is the size of each of the k samples and Mse is the error mean e/n

square from the‘analysi; of variance (note ihat the teéhdique a;sumes that
the k samples are_all of the same size, n). This ratio is thgp‘compared

to qk,v,lfg » the 100(17a5 per?entile of,the'Studentized range distribution
with parameters k ;nd v, the number of degrees of freedom associated with B

the error Sum:bf squares in the analysis of vériangs.

If .

A

K(k) (1) > W,v,1-a . [1]

4
the hypothesis of no difference between the megné of groups (k) én@ (1) is

rejected and the researcher proceeds to test other pairs of means. If,

¢

"‘on the other hand, . '
k) -(1) < %,v,1% | o : [2]
the researcher concludes that the téo most extreme group means are not ,dif-
ferent, Since the two most extreme group meang are judged not to be
different, the researcher also concludes that all other, less extreme,

pairs are not different. In this case, no further comparisons are made. -

If the inequality in [1] 1s true, the next comparisons to be made are ' ,

NS

those repreaented in the inequalities,

\ Y -Y ' -
(k-l) (1) - 4 ‘' -
1KQ(k-1)-(1) -~ > %1y, 1% . (3]
. MS n , :
e By
arid
T, -7 ‘
(k) (2) .
Q) -() ™ 2 e,y 10 (4]
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If [3] 18 true the researcher:procegds to examine Y(k-27“§ Y(l)’ but if
{3] is not tfﬁé”théh‘;he two means u(k-Z) and u(l) are judged not to be
. - _ < -
different, Similarly, if [4] is true Y(k-l) - Y(Z) and Y(k) - Y(3)’ate
examined, but 1f [4] is not true the analogous population means are judged -
not to be different. If we construct a table of differences between pair;
\ of ordered means, as illustrated in Table 1, it can be seen that this
Y
procedure results in the following rules: (a) we start by examining the
difference in the upper right corner and if it is significant we proceed
to examine the next difference in the same rov and the next difference in

the sana2 columﬁ, (b) when a nonsignificant difference is found, no further

\\\. differences in the same row and the same column are examined.
Q‘ » © ~

v

N . Table 1
’ Mean Difference Table for Newman-Keuls Technique
Yo " Y | Yoy - Yy Y- “ Yy | Yoo “ Yo |
Y33-~ Y2 A Ya-n " Y | Yo " Y@
. . ' 3 ~
s X > 4 ) L L. N - -
T " -2 Yoo T Ye2)

- Yao ~ k-
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‘that the‘hull hypothesis isstrue then the variable kQ(k) (17 (in formula 1)

. ) + -
° . \'4-
@

3. The Problem . . N . Lo
\ . - e A -

The wse of the Uy distribution for the distribution of the test
3 'Y .

statistic, kQ(k)-(l); as a test of

Ho1t Wy = S T uk‘ i
is valid when the usual ANOVA" assumptions are met (Spj¢tvoll 1974) That

is, given normality, independence, homogeneity of variance, and the fact

4

‘is distributed as the Studentized range with k and v degrees of freedom.

and . .

_rejection of H ol ‘ .

-

As Spjétvoll notes, if we reject H using the decision rule in [1]

then we*- "conclude" that My # ul. In this case, it is tenable that it ’ Coer

-

4
is population k that 1is different from the othersAor that it is population

1. .Therefore, we have two possible simplifying hypotheses: ;

HoZ' ul Uy = 2.. =‘uk_1 . . . i

H

03" Y27 U3 T oo Ty

These correspond respectively to the cases where M and My lead to the , ) .

-

Now if it is true that H ol is false then in H 02 and H o3 Ve have chiosen _
to remove a. pppulation mean (either Hy . OT ul) that is indeed different from
the others. In this case, the removal'of this extreme value should not ' " - ,
effect ,the order statistics of the remaining k-1 means and we'can‘use the
test statistics kQ(k 1) (1) and kQ(k) (2) to test HOZ and H 03 respectively.
Again, if we assume H 02 and H o3 are true and the ANOVA assumptions are met .

then the variables kQ(k 1) (1) and kQ(k) -(2) should be diatributed as the

Studentized range with k-1 and v degrees of freedom. ' ;

o . >
-
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However, if we made a Type I error in "conclﬁﬂing" that ﬁ;l is false

) h . i , *
then the distributions of the variables kQ(k—L)r(l)-and ko(k)n(Z) are ‘not .

| ‘.

- the results of k-1 independent samples. Rather they represent k-i‘samples . v

remaining after discarding oné extreme observation. fhis has the effect

’

of trun&ating or restficting the range of Qalues‘fof.thé test'gtatistics,

It was hYpothesi;ed thai this would reduce the actual mean and variance of
. N " )
the distributions and consequently will lead to a more epnservative test .
4
of Hoz and Ho&‘ The same argument applies to Ho4"H65’ etc., 1if we rgjected

HoZ or H 5 on the basis of kQ(k-l)-Cl) or kQ(k)-fZ).

Of course, if we knew that Hol were actually true then following thi
logic of the testing procedure we qu%g not teét HOZ?’HQ3’ étc. ﬁowévei, ',
;n practice we‘make the origi;al-éecisi;n on the basis of kQ(k)—(l) and
X indeed Type I'eérors will be made. Since éﬁls is a problem for all such

comparisons, a natural question is, "How differ;nt are the true distribu-

tions of ‘the Newman-Keuls test_ statistics from the Studentized range dis- >
i:) tﬁ?butions that are actually uged?" > S .
Since the mathematical.derivations and subsequent nunerical integrations ”{?

to determine the critical points for the actual distributions are quite

. A

.

complex, a lonte Carlo sampling study was désigned to estimate how conserva-

. ‘tive the test procedures are. The design of the study.is discussed in

-

. P | .

’ Section 5, ' " O o




4., ' Related Literature

Although we were unable to find any literature relatipg directly to -
- g

the problem of this study thefeﬁére‘sevefal sources that proGide informa- .-
tion abo&t’the Newman-Keuls technique and its use.

As mentioned eaglier the technique examined in this study was first
proposed by Newman (1939) and later Keuls (1952), apparently unaware of
Newman's paper, proposed the same technique. Newman, and Miller (1966)

both indicate that the basic idea was an outgrowth of the work of “Student."
, . o
The most comprehensive textbook discussions of the Newman~Keuls tech-

nique are thpse of ifiller (1966, pp. 81-90) and Winer (1971, pp. 191-196).

-

Miller presents most of the underlying theory and compares the technique
to alternative techniques, in particular to the Duncan multiple range
test., Winer presents the computational procedures and also presents a

comparison of seven differenf multiple comparison methods, including the

-

Newman-Keuls method. Other texts that.discuss the technique include those

~

"of Kirk (1968) and 4endenhall (1968) .
Besides the above-mentioned textbook discussions there are several

Journal articles that include discussions of the Ne&man~Keuis technique,
-] A ’
The most comprehensive of these is the article by Spjdtvoll (1974) in

-«

/ N '
which the bases of several procedures and comparisonssof them are discussed.

-

@
O'Neill and Wetherill (1971) briefly mention the Newman-Keuls technique

in an interesting "state of the art' discussion, and also provide an
. . 3 14
extensive bibliography on multiple comparison procedures. Two studies’

’ .
(Petrinovich & Hardyck, 1969; Carmer & Swanson, 1973) have been condocted
in which Monte Carlo methods were used to compare the Type I and Type II

error rates of several multiple combarison technqiues, Although the Newman-
= -

Keuls technique was‘}nveétigated in both of these studies the conclusions'

%
&

‘
“ : e
—— < .
o 8 '
- ERIC* '
AFunText provide c v M
N "

‘.
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"

were quifé different., | Petrinovich and Hardyck argue against using the
Newman-Keuls technqiue because they found it had a high experimentwise

Type I error rate under conditions other than the case wh%re all popula-

- '

tions have identical means. Carmer and gwanson, on the oﬁtgr hand reject

-

the Newman-Keuls procedure because of its Type II.error rate. Games (1971)
prdvides some additional discusgion in a criticism of the Petrinovich and

Hardyck article. Interestingly, Carmer and Swanson generated their data

-

according to a randdémized block &esign wich’zero’block effects, and ~

!

analyzed the data'according to tha§ model. With zero’block effects the

. o . . o 1
correct model would be the completely randomized model and, in peneral,

analysis according to-an incorrect model leads tg'a loss in precision.

-« -

The autho¥s do not indicate why ‘they éhose the blifking aesién. /

R 5/ Deéign of the'Stqdy'

‘ " In 6rder to investigate the sampling distribution of the test statistic
used in the ﬁewman—Keuié technique a total of 9 experiments were simulated,
each with 10,000 rgplications, The first three experiments each had three
gréupé and used samples of size 5, 10, and 15 respectively. ?he next ;hréé
experiments involved four groups ﬁgaiq using sample sizes of. 5, 10 and 15.

.The final thiee experiments were explicitly designed to generate empirical
sampling Aistributions of the‘Specific,Siudeqtized range distributions that

- would be needed in some of the first six experiments..'fhe descriptions of

the nine experiments shown in Table 2, include the error degrees of freedom

-
»

in order to indicate in which experimehts the distributions are conparabie.

’




»

]
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Table 2 7 .

N

Déscriptions of the Simulated Eipgriments

-

Experiment No. o 2 3 4 s 6 7 8 9

No. of Populations 3 3 3 4 4 4 2 2 3 -

Size of each Sample . 5

. 2’

10 15 .5 22 13

Error Degrees of
Freedom

27 42 42 36

" For each of the possible contrasts in each experiment .the frequency
with which the Qalue of the test statistic fell in each of seven intervals
was tabulated. The seven intervals were defined by using percentiles of
the particular Studentized range distribution that would be used for the
Newnan-Keuls technique op each contrast. The percentiles (.900, .950,

975, .990, .995, .999) were taken from Harter's (1960) tables or calculated
by liﬁear harmonic ‘interpolation of values from those tables as suggested
by Harter. The upper tail bereentiles wete chosen because they are tﬁe
critical areas of the distribution used by the Newman-Keuls technique.

Thus, using Q to represent the value of the test statistic and Pj to

represent the jth percentile of the apprépriate Studentized range distribu-

. A}

tion; the seven intervals that were uged were: Q < Pgos Pgg < Q L Pgss
P95 < U Pgy 55 Py 5 < QL Pygi Pdg < Q < Pgg g3 Pgg 5 < Q < Pgg g3 and
Pg9.9 < Q- . ‘

Estinmates of the mean, variance, skewness and kurtosis were ;Lgo cg}—_
culated for each distribgfion, using the formulas given by Benneti and
Franklin (1954, pp. 81-82). Using the method described g& Newman (1939)
expected values of each theoretical distribution wéie computed and com=-

‘parisons were made between these expectations and the means of the distribu-

tions that ,were generated.

10
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It was anticipated that the distributions for the test statistics'’
a- : ‘ )
would show less variability than the theoretical distributions for conérasts

involving pairs of means orher than the two most extreme for a particular

TR

experiment,

6. Generation Techniques . )
§
Valpes of the dependent variable were pseudo-random standard normal

deviates generated by using the log-and- trig transformation method (Box &

7

j Muller, .1958) on pseudo-random uniform values generated by the multiplicative

congruential method. The multiplier for the congruential method was 131075,
%

which was selected because it has been demonstrated to result in variates \

1

having desirable characteristics (Pingel, 1975; Macl8ren & Marsaglia, 1965 ).
’ y . . ,
All computations were done on a PDP10 computer at the University of Pittsburgh

Compdter Center. This machine stores an integer in a location having 35
bits plus sign, and thus residues mod (235-l) were used by allowing integer

. |
multiplications to overflow. For m:[e details of this technique the

interested reader is referred_to-Ne an and Odell (l§7l) or Hammersfey‘and
Handscomb (1964) . g ,T -

|

In order to check the computer pﬁogramo, samples of the pseudo-random
|
2

umniform and normal variates were gen rated and unq@ised estimates of - the
: \ i

méans and variancesrcomputed. A samjle of 10,000 uniform values had
N |
a mean of ,49945 and\:ariance of .08

58 as, compared to the theoretical values
of .S and .08333, respectively. Threé samples, each of 10,000 normal values

were. generated and had means of -.01254 -.00344, and .0105Z and variances
of 1.00182, ,99960 and .99350 as compared to the the{retical values of zero
and one, Finally, using the final version of the computer’ program, a total

~

sample of 3000 normal values was generaked and the mean and varﬁpnce estimates

were .00858 and .99565 respectively. .\ . ) - .

: .1\11
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7. Results’

3 Tzbles 3 and 4 show" the frequencies with which values of the Newman-
Reuls test statistic were di§tributed across the seven intervals defined \
+ 0y using percentiles of the theoretical Studentized range distribution. :

For-rows 1, 4, 5, 8, and 11 the Studentized range distripution is
theoretically cotrect. As can be seen by examining these rows the

N

cbserved frequencies correspond closely to the expected frequencies.

Row 1 corresponds eo'the distribution of 3Q(3) ~(1) and the Studentized
range distribution is the appropriate disQéé;ution. As outlined before,

1f a Type I error is made in this test then we would proceed to incorrectly
test 3Q(2) (1) and 3Q(3) -(2)" The distributipn of these statistics do not
theoretically have Studentized range distributions. The observed fre-
quencies in rows 2 and 3 clearly indicate that these two tests-'daviate
markedly from the expected frequencies. The deviations are in the pre-

dicted direction, that is, the tests“ﬁguld be conservative. For comparison

purpbses‘we generated the data in row 4 which has the same degrees of freedom

as rows 2 and 3. However, this distribution is theoretically correct because .

°
s

it involves the coptrast between the two extreme means in a two population

case. Recall from Table 2 that in order to get comparable degrees of free- .

-

dom the sample size in experiment 7 were equal to seven. Further examina- ,
tion df Table 3 for the cases where n=10 and nalZFSupplies further evidence

for the conclusion that if a Type I error is madb! for’ the first conttast
tested by the Newman-Keuls technique then the significance level, for. the
next two tests 18 much smaller than the nominal level the researcher may ’
think he 18 using when he performs the tests. ‘That is, when k=3 the sample

si;es, and “ence the number of error degrees of freedom, appear to make little

difference in the conservativeness of the tests, . ’

) e - /

12 - .

1

)
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{ , o
Similar conclusions are reached after examining rows (1,2,3; 7,8,9,10;H-

14,15,16) of Table 4, :These cases represent the situations where k=4 and o

-

. . "n-5, 10, and 15. It 1is easy to gee again that when a Type I error is

~

’ . made in the first test then the resultant tests baged - on AQ(A) ~(2) and

4Q(3)_(1) are conservative.‘ Next, consider rows (4 5 6; 11,12,13; 17,18,19)

1]

. ’ of Table 4, Examination of tliese rows® shows, as might be expected that et .

- the distribution of the*test statistic is even more drastically affected

\ -
when tio or three Type I errors arelmade._ In this case we are conducting

e vr\

tests of means rebeiving adjacent ranks for four—population experiments. ‘

In all cases considered here, the Newman-Keuls technique becomes very

conservative with respect to Type I errors once one or more Type I. errors

1)

have been committed. This finding is in agreement with the. author's
- : a priori hypothesis that the distribution of the test statistic would have
\a smaller mean and variance “under these conditions than when no Type 17

) " error was made, ) . ] ‘
‘.48 a further illustration of the departure of the actual test statistic

»

. distribution from that used to obtain the critical values we present in
v

. Figures 1, 2, and 3, plots of the empirically generated distributions for-
. : ’ ZQ(Z)-(l)’ 3Q(2) (1) and 3Q(3) (2) These three distributions were chosen

. ‘ because it was possible to design, for example (Figure 1) a. two-population
. , *

experiment with 12 degrees of freedom, for which q2 12 is the theoretically

+

correct test statistic distribution, and a three-population experiment which

»

would result in the use of 9 19 after having made a Type I erfor.
. Ky , . . .

L7
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Comparisons of the actual means of the generated distributions with thel -
expected values of the Studentized range distributions used in the lNewman-
Keuls technique are presented in Table 5. This‘Table has fpur sectigqg.

The first section contains the comparisons‘for,the‘distributions that are
theoretically‘zorrect (no Type 1 errors, préviouslx made) . The other sections
cdntain,the comparisons for ;ases in_which one, two'and thrée T;pe 1 errors
have been previously made and the expectations in'thes; séctions are those

,-

for the specific Studentized rahée.distfibutions used in the Newman-Keuls

technique. - . >
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. ' . Table 5

Comparison of Empirical Means and Their Expectations

No., ‘of Distri-

1

. Previcus bution ) Difference
, Statistic Type 1 Used Mean ,Expectation Mean-E(Mean)
' . Errors i N
22—y 12 0 g, 4, 1.2116 1.2056 .0060
' , <l - - “a
Pl RN
Qoy. 42 0 q 1.1665 ~  1.1490. .0175
sy \2‘ (2) (1) ] 2,12 . . R ‘_ 7’
. Ry 2 0 qy . 1.8099. 1.8084 « " 0015
o V@i 20 a3 1.7416 1.7415 " .0001
Qi) ¥ 0 ay 4 1.7154 1.7289 -.0135 . -
’ S'
C o420 1. .72 -.0C
' 16 0 ' 2.1 . .
) 024y (D ' %, 16 ir20 21620 0100 ..
rd . .
4Q(4) _(1) . 36 0 ql’ 36 2.0897 2.1029 ".0132 .
. - » 5
Quay-) 6 0 q .2.0767 2.0868 -.001
’ 3 1 2 O - e
- Ry 21 g, g9 - 12086 -.3037 &
; Woyoy 21 1 ay,, .0 872 1.1609 -.2887
C R@ya@ 1 a4y . 869 1.1609 -.2915
S Qg ¥ 1L %, 36 .8642 71,1526 -.2894
. ; Co ‘ :
NEy-2y ¥ 1 93 - 8512 . 1.1526 -.3014 -
. 3Q2)-q1) 42 14y, .8501 | 1.1490 -.2989 .
;o Ay 21 9, b .8690 1.1490 -.2800
Qay-cy ¥ 1 934 1.4082 1.7774 -.3692
e Quye BT 43,0 ° 1.3932 1.7774 - -.3842
’ - 36 1 -
‘ 4Q‘(3) -(1) « Q3’ 36 1.3440 1.7289 .3849
Quy-2) ¥ 1 955 1.3529 1.7289 --3760
- & Qayy 6 1 a5 " 1.3443 "1.7157  -.3714
Q) 6 1 %5 1.3396 1.7157 =.3761-

*
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Qo |
. ‘ Table 5 (cont.) P : -
No. of . Distri- ' ‘
Statistic v g;::i;“s bution Mean ° Ezpectation u3§§f§f§2§§)
Errors | ) X
Q- 6 2 9,16 .7788 1.1850 - 4062
~ . ) Y '
Q?(a)-(a) 16 2 92,16 -7638 1.1850 . -.4212
Ry ¥ 2 9 36 .7368 1.1526 - 4158
’ WQRy-3° ¥ .2 9 3¢ - L7457 1.1526 -.4069
Qy-y 56 2 4 56 7371 1.1438 4067
Qeay-3y 2 92,56 -7324 1.1438 -.4114
X : -.555
Q3y-2y ¥ 3 %16 629 1.1850 5
Q- ¥ 3 a5 o 1.1526 - 5453
.1438 -.5366
Q3y-2y ® 3 1 56 1.143 3

ey

Values in the first section of Table 5 show that the means of the penerated

distributions are very close to their expectations, the largest deviation from

expectation for the 9 distributions being only .0175. After one Type I error

v

has bé;; made however, the mean of the empirical distribution -differs from
the expectation of the distribution used’ “in the Newman-Keuls procedure by

amounts ranging from .2800 to .3849 for the 14 different distributions.

Similar{y, the mean of the empirical distributions for the case of two previous

Type I errors deviate from the expectations of the dis;ribucions ;ctually used

by amounts varying from ,4062 .to .4212. for six,distribﬁﬁﬁons, and rhe similar
/‘ deviations for three distributions following thrég iyéé I errors range from

.5366 to .5555.

Ll
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Tables 3 and 4.
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4 2

. These data indicate, as we had predicted, that the means of the dis-

tributions of the Newman-Keuls test statistfc definitely do decrease following

a Type I errdr on a previdus test.

As a final basis for comparison of the distribﬁtions geﬁerated in this
- ’ 3 ‘

N

study we present, in Table 6, estimates of the means, variances, and indices

>

of skewnesg (gamga-gne) and kurtosis (gamﬁa-two), For convenience of reading °

this Table presents the particular contrasts in the same order as used in

s

\- .
N 1]
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4

Table 6 ° S :
Estimates of Parameters of the Distributions ' \
No. of ‘
Statistic v g;:;riclms — Es;i;a:ieof Pg;la:me:;::: ST -
Errors > . . :
R3y-) 12 . 0 1.8099 1.1353 1.2098 2.8572 ,E
Rezy-2) 2 1 219019 .6025 +1.5351 3.3147 |
Rezy-y 12 1 .9079 . .6077 1.5934 4.0802 E
2%2) -(1) 12 0 1.2116 9314 1.2794 2.2504 %
N3y ¥ 0 1.7416 .9274 .9130 1.2369
-y Y 1 -8694 .5137 1.3637 2.4987 ‘
Re2y-y 27 1 .8722 .5123 1.2731 1.9543
3y ~(i) 52 0 1.7191 L8723 L7398 -4999 j
A3y-2) © 1 -8690 4971 1.2010 1.5185 )
Ray-) 2. . 3 1 .8501 .4831 1.2271 1.6903 '
Ryr) 42 0 1.1665 .7825 - * 1.0681 1.1629
-N3y-y F ,1 -8512 4963 1,2901 ~  2.0159
Ry-q) 1 -8642 4983+ 1,2745 2.0331
Qay-y 16 0 2.1720 - 1.0523 8727 1.2383
4Q(4)_(2) 16 1 1.3932 ° .6794 .1,0277 _1.§104
Qz-y - 1 1. |le082 6786 1.0156 /7 1.5548
Qey-z) 16 2 7638 ' L4262 1.4196 2.5623
Qey-qy 2 L7788 4306 1.3750 2.4693
. S ,
Q3y-y 1 3 +6235 +2991 *1.5281 3.4331
|
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’ Table 6 (Cont.)
. - N f P v ) o .
o © Estimates Jf Parameters oy
Previous P ,
 Statistie v P T M pegq Variance  Skewness  Kurtosis
. Errors .
AQ(A) -(1) 36 0 2.,0897 .8750 .6720 :54}7’ .~
5 Qay-2y 3 1 1.3529 .5896 8581 | .8951
83y-q1y 36 1 1.3440 5820 .8139 7356
. N X (: SN
'3Q(3)-(l) \ 36 0 1-7l§§ .8963 .8356 .8442
Qay-(zy 38 2 .7457 .3968 1.3975 2.6537
Qe2y-1y 36 2 .7368 .3877 1.2802" 1.8960
Ve \ g
T Qa2 38 3 .6073 .2590 1.2802 1.8353
44y ~(1) 56 . 0 2,0767 .8397 . .6263 L4946
Qeay-2y 8 1_ 1.3396 .+9633 . .8328: .8877
Qy-qy 8 1 1.3443 .5804 .7862 .5126
Qey-3) 8 2' 7326 - L3677 1,2768 1.9909
. . S 2.0
Q2y-y  ® R 971
L] L] 2.

<y,
L
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Examining first the estimates in Table 6 for the cases of theoretically

correct distributions we can see several tendencies. For these cases the dis-

.

tributions are positively skewed and leptokurtic. As 18 to’be expected the

means and variances for the same number of groups (kk decrease as the degrees
\

of freedom (v) increase, and increase ag k increases when v remains constant.

There 1s a definite tendency for the degrees of skewness and kurtosis to -

-decrease as v increases for the game k and also a tendency for these indices

-

. to decrease as'k increases with v held constant. Y
Next we examine those cases’in which one Type I error has been committed -

previous to the test of a mean difference, and for which we were able to
compute estimates of the paraneters of the distribution that would be used in

o

actually applying the Newman-Keuls technique., For’example, we\tompare the
estimates of parameters of 3Q(2)_(1) and 3Q(3)_(5)pwitn those for 2Q(é)-(1) .
for the same number of degrees of freedom. On paking these comparisons- we
see that, as we had originally hypothesized, the means ‘and variances are
smaller than tne values from the”distribution that woulu be used in applying )
the Newman-Keuls procedure. There is also a'tendencx for the actual dis- ‘
”tributions generated u;der the condition that one Type I error has been made
to be more skewed and more leptokurtic than the theeretical distributions.
‘ In all cases the tendency is‘for all estimates.to decrease in value as v in-
creases for the same k, for the mean and variance of these digtributions to

\ L]

de%rease as k increases for the same v; and for the indices of skewness and
[

kurtosis to decrease as k increases for the same v.

s

Further examination of the data reveals that when more than one Type I
error has been committed the mean and variance decrease even further but the
”, 4

indices of skewness and kurtosis appear not to be greatly affected.

25
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.» 8, Discussion .

- A 4
As had been expected by the authors prior to generating the data reported {?,

. “in this paper, the distribution of. the Newman-Reuls test statistic changes
\ ’ - ' .
shape after a Type I error is committed. Also, ab expected this changé' -

0y
©

results in an actual @ype I error rate that is smaller than the significance

level chosen by the researcher. This means, of course, that the ‘Newman-Keuls

’

procedure becomes rather conservative when one Type I error has been made,
\ N . A"
+ . -
and even more conservative following additional Type I erxors. Thus the

phancé of ‘making two or more Type I errors is lower than would be expected

if the disttributions were not ‘affected by the results of the previous "

s R

. ' significance tests,

-

It is difficult to atfzhpt to relate our findings to those of Petrinov&ch
. v .

and Hardyck (1969) and ‘Carmer and Swanson (1973) because there 5%9 no fgason

for them to estimate separately the error rates of second and third comparisons

.

" after ﬁakiﬂé errors on the initial comparison.. Our results do, of course,

“ ‘. R .
relate to the fact that Petrinovich and Hardyck found the .experimentwise

. 0 . .
Type I error ggte for the case of all populations having identical means to -

’

be better than that for mixtures of populations. .

Spjétvoll (1974) in his section on the justification of the Newman-Keuls

technique makes the statement, "At step 2 we assume (italics ours) that the
A Y

L3 1

conclusion reached at step 1 is correct [p. 100}." Our findings point out thé

importance of this assumption. ‘ - ' .
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